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Abstract
Here we compute the static potential in scalar QED3 at leading order in
1/Nf . We show that the addition of a non-minimal coupling of Pauli-type
(εµναjµ∂νAα), although it breaks parity, it does not change the analytic
structure of the photon propagator and consequently the static potential remains
logarithmic (confining) at large distances. The non-minimal coupling modifies
the potential, however, at small charge separations giving rise to a repulsive
force of short range between opposite sign charges, which is relevant for the
existence of bound states. This effect is in agreement with a previous calculation
based on Möller scattering, but differently from such calculation we show here
that the repulsion appears independently of the presence of a tree level Chern–
Simons term which rather affects the large distance behaviour of the potential
turning it into a constant.

PACS numbers: 11.15.Bt, 11.15.−q

1. Introduction

An important problem in high energy physics is the lack of a rigorous proof of colour
confinement in 4D QCD. Different techniques have been used to tackle this problem. We
can mention lattice simulations [1], supersymmetry [2] and lower dimensional models [3–5].

In order to investigate the contribution of the matter fields to this problem we integrate
over such fields in the path integral and derive an effective action for the vector bosons; solving
the equations of motion of this quantum action we can compute the potential between two
static charges separated by a distance L. A monotonically increasing potential as L → ∞
signalizes confinement. This route has been followed in [6–9] in the case of QED3. In that
model, if we work with two-component fermions, the fermion mass term breaks parity and a
Chern–Simons term is dynamically generated leading to an important change in the analytic
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structure of the photon propagator which turns the classically confining logarithmic potential
into a constant at large distances.

In the case of scalar QED3 we have a different scenario since its mass term, like the rest of
the Lagrangian, is parity symmetric and no parity breaking term is dynamically generated, so
the classical logarithmic potential survives at quantum level. Therefore, it is expected that the
inclusion of parity breaking terms in the Lagrangian would strongly modify the static potential.
A natural possibility to be considered is a non-minimal coupling of Pauli type which breaks
parity but preserves gauge invariance. This term is rather simple in D = 3, where the dual field
strength (Fµ = εµναAµ∂νAα) is a pseudo-vector and the addition of the non-minimal coupling
amounts to the replacement eAµ → eAµ +γFµ, where γ is the non-minimal coupling constant
which has negative mass dimension. This term has been considered before in the literature of
QED3 and scalar QED3, see e.g. [9–16].

Another motivation for the inclusion of the non-minimal coupling comes from [12–14],
where there are indications, see however [15], that the coupling of a gauge field to fermions
via a Pauli term could give rise to anyons with no need of a Chern–Simons term. Since the
change of statistics is a long-range phenomenon and the Chern–Simons term indeed changes
the static potential at large distances, we would like to include the Pauli-type interaction in
order to check, at least in some approximation, if it could really produce large distance effects.

A further point concerns previous calculations in the literature. It has been claimed in
[16, 17] that the effect of the non-minimal coupling on the static potential only appears if a
Chern–Simons term is present. This is apparently not the case of QED3 with four-component
fermions where no Chern–Simons term is generated but still there is some influence of the
Pauli-type term on the static potential at low distances [9]. It is important to remark, however,
that here and in [9] one works at leading order in 1/Nf which requires the calculation of
the one-loop vacuum polarization diagram, while the calculations of [16, 17] are based on
the one-photon exchange diagram at tree level (Möller scattering) in the non-relativistic limit.
In order to control the effect of the Chern–Simons term and compare our results to [16, 17]
we introduce here, besides the Pauli-type term, a Chern–Simons term at tree level with an
arbitrary coefficient.

We have already mentioned that the Pauli term demands a coupling constant with negative
mass dimension (non-renormalizable), so we found suitable to use 1/Nf expansion since
there are some arguments [18] in favour of the 1/Nf renormalizability of such interaction.
In the following section we start by integrating over the Nf scalar fields at leading order in
1/Nf . Then, we analyse the analyticity properties of the corresponding photon propagator. In
section 3 we minimize the effective action and compute the static potential V (L) numerically
for a finite scalar mass and analytically in the limit m → ∞. We draw some conclusions in
section 4.

2. The photon propagator at Nf → ∞

Our starting point is to integrate over the Nf scalar fields φr , r = 1, 2, . . . , Nf in the partition
function below:

Z =
∫

DAµ exp

(
i
∫

d3x L
(
Aµ, jν

ext

)) Nf∏
r=1

Dφ∗
r Dφr exp

(
− i

2

∫
d3x φ∗

r [DµDµ + m2]φr

)

= C

∫
DAµ exp

(
i
∫

d3xL
(
Aµ, jν

ext

) − Nf Tr ln[DµDµ + m2]

)
, (1)
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where C is a numerical constant and

L
(
Aµ, jν

ext

) = −1

4
F 2

µν − θ

2
εµναAµ∂νAα +

ζ

2
(∂µAµ)2 − Aνj

ν
ext. (2)

The external current corresponding to a static charge Q at the point (x1, x2) = (L/2, 0) is given
by jν

ext = Qδ(x2)δ
(
x1 − L

2

)
δν0. Later on, the interaction energy of a couple of charges −Q

and Q separated by a distance L will be calculated via V (L) = −QA0(x1 = −L/2, x2 = 0),
where A0(xν) will be obtained minimizing the effective action coming from (1). The covariant
derivative Dµφ = ∂µφ − ieφAµ/

√
Nf − iγφFµ/

√
Nf includes the non-minimal coupling

constant γ which has negative mass dimension [γ ] = −1/2 while [e] = 1/2 and [θ ] = 1.
The dual of the strength tensor is defined here as Fµ = εµνα∂νAα .

The next step is to evaluate the trace of the logarithm perturbatively in 1/Nf . We have
two types of interaction vertices coming from L(1)

int = i(φ∗∂µφ − φ∂µφ∗)(eAµ + γFµ)/
√

Nf

and L(2)
int = iφ∗φ(eAµ +γFµ)2/Nf . Thus, the leading contribution in 1/Nf would come from

just one vertex of the first type; however, since it involves derivatives of the scalar fields the
Feynman rules for scalar QED include a factor pin

µ + pout
µ where those are the incoming and

outgoing momenta of the scalar fields. Therefore the diagram (tadpole) will be proportional
to the integral

∫
d3p

(
pin

µ + pout
µ

)/
(p2 − m2) = ∫

d3p 2pµ/(p2 − m2) which vanishes in
the dimensional regularization adopted here. The next leading contribution includes either
two vertices of the first type or one vertex of the second type. Both contributions will be
independent of Nf due to the overall factor Nf in front of the logarithm in (1) and will survive
the limit Nf → ∞. The next contribution would come from three vertices of the first type and
would be of order 1/

√
Nf so it vanishes if Nf → ∞. Such contributions and higher ones will

be neglected henceforth. In conclusion we have, up to an overall constant, Z = ∫
DAµ eiSeff

where

Seff =
∫

d3xL
(
Aµ, jν

ext

) − i

2

∫
d3k(eÃµ(k) + γ F̃ µ(k))Tµν(eÃ

ν(−k) + γ F̃ ν(−k)). (3)

The quantities Ãµ, F̃ν are Fourier transforms and

Tαβ = −2gαβI (1) + I
(2)
αβ . (4)

Using dimensional regularization we have obtained for the Feynman integrals

I (1) =
∫

d3p

(2π)3

1

p2 − m2
= i

m

4π
(5)

I
(2)
αβ =

∫
d3p

(2π)3

(2p + k)α(2p + k)β

(p2 − m2)[(p + k)2 − m2]
= im

8π
[4gαβ − 2zf2θαβ], (6)

with z = k2/4m2 and θαβ = gαβ − kαkβ/k2. In the region 0 � z � 1 we have

f2 = 1

z

[
1 +

1 − z

2
f1

]
= 2

3
+

2

15
z +

2

35
z2 + · · · (7)

f1 = − 1√
z

ln
1 +

√
z

1 − √
z
. (8)

Above the pair creation threshold (z > 1) the integral I
(2)
αβ develops a real part which will

be neglected henceforth. For future use we have given the large mass expansion for f2. The
static potential requires the expression for the effective action for z < 0 which can be obtained
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by analytically continuing (7) and (8). Namely, with z̃ = −z > 0 we have

f̃ 2 = −1

z̃

[
1 +

1 + z̃

2
f̃ 1

]
= 2

3
− 2

15
z̃ +

2

35
z̃2 + · · · (9)

f̃ 1 = − 2√
z̃

arctan
√

z̃. (10)

Our result for Tαβ is in agreement with [19] and it is transverse kαTαβ = 0 = Tαβkβ in
accordance with gauge invariance. Now we can write down the effective action for scalar
QED3 including vacuum polarization effects:

Seff =
∫

d3x

{
−1

4
Fµν

[
1 − γ 2 �f2

16πm
+

e2f2

16mπ

]
Fµν +

ζ

2
(∂µAµ)2

− θ

2
εµναAµ∂νAα − eγ

16mπ
εµναAµ∂ν�f2A

α − Aνj
ν
ext

}
, (11)

where f2 = f2(−� /4m2) is given in (7) and (9). Note that, besides the tree level Chern–
Simons term, another parity breaking term appears in (11) due to the magnetic moment
interaction. Although the action (11) is non-local it can be made local in the large mass limit
m → ∞ as in [20]. Introducing the dimensionless constants

c1 = e2

16πm
, c2 = eγ

8π
, c3 = θ

2m
, (12)

taking m → ∞ while keeping the dimensionless constants finite, the only effect of the vacuum
polarization is a finite renormalization of the Maxwell term, i.e.,

Seff(m → ∞) =
∫

d3x

[
−1 + 2c1/3

4
F 2

µν − θ

2
εµναAµ∂νAα +

ζ

2
(∂µAµ)2 − Aνj

ν
ext

]
. (13)

On the other hand, for finite mass we can write

Seff =
∫

d3x d3y

[
Aµ(x)

D−1
µν (x, y)

2
Aν(y) − Aνj

ν
extδ

(3)(x − y)

]
(14)

=
∫

d3k

(2π)3
Ãµ(k)

D̃µν(k)−1

2
Ãν(−k) −

∫
d3xAνj

ν
ext, (15)

where the photon propagator in momentum space is given by

D̃µν = a(gµν − θµν) + bθµν + cεµναkα, (16)

with

a = 1

ζk2
(17)

b = − c1(D+ + D−)

8m2
√

zD+D−
(18)

c = −i
c1(D+ − D−)

16m3zD+D−
(19)

D± = √
z[c1 + (c1 ± √

zc2)
2f2] ± c1c3 ≡ g±(z) ± c1c3. (20)

Now we are able to analyse the analyticity properties of the photon propagator. First of
all, we note that the massless pole z = 0 in the denominator of (19), which is typical of
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a Maxwell–Chern–Simons theory, is a gauge artefact. It disappears from gauge invariant
correlators involving the field strength Fµ. It can be shown [21] to have a vanishing residue
(non-propagating mode). Since the factor

√
z in the denominator of (18) is cancelled out by

the numerator, the only possibilities for poles in the propagator stem either from D+ = 0
or D− = 0. Due to c1 > 0 and 2/3 � f2 < 1, we have g±(z) > 0 and consequently
we can only have D+ = 0 or D− = 0 for c3 < 0 or c3 > 0, respectively. We never
have two poles at the same time. In the absence of the Chern–Simons term, i.e., c3 = 0,
the product D+D− will be proportional to z and we are left with one massless pole z = 0.
Since limz→0 z(a + b) = −1/(1 + 2c1/3) < 0 the residue at this pole will be positive
and this represents a physical massless photon which will be responsible for a long-range
logarithmic static potential. On the other hand, if c3 �= 0, since the denominator D+D− is
symmetric under c2 → −c2, c3 → −c3, it is enough to consider only D+ = 0 assuming
c3 < 0; the other case D− = 0 with c3 > 0 follows from the symmetry. Numerically,
we have checked that whatever sign we choose for c2 the function g+(z) is monotonically
increasing and satisfies g+(z) > 0; consequently its maximum is g+(1). Therefore, see (20),
if c3 < −g+(1)/c1 = [(c1 + c2)

2 + c1]/c1, then we have no poles and so no particle in the
spectrum. On the opposite, if −g+(1)/c1 < c3 < 0 we are always able to find numerically
one massive pole for some 0 < z < 1 such that D+ = 0 which is a typical effect of a
Chern–Simons term [22]. As we move towards the left limit value c3 → −g+(1)/c1, the
photon mass increases to the point where it reaches the pair creation threshold k2 = 4m2 at
c3 = −g+(1)/c1. Due to the symmetry c2 → −c2, c3 → −c3 we conclude that whenever the
tree level Chern–Simons term is present and its coefficient is not too much negative or too
much positive (|c3| < g+(1)/c1) we have one massive physical (positive residue) photon and
if the Chern–Simons term is absent we have one physical massless photon.

It is remarkable to find a no poles region in the photon propagator. One might think that
this is due to some convergence problem of the 1/Nf expansion which has been introduced
because of the non-renormalizable non-minimal coupling c2. However, even if c2 = 0 the
Chern–Simons coefficient must obey an upper bound |c3| < g+(1)/c1 = 1 + c1 in order to
have a physical pole in the photon propagator at one-loop level. By analytically continuing,
see (9), the expression for the propagator to the region z = k2/4m2 < 0, we have checked
that tachyons can only appear for a special fine tuning of the coupling constants for which
we did not find any special interpretation, namely, the tachyonic pole must be a solution
of z̃f̃ 2 = c3/(2c2) and this solution must be such that c2

1c3 = −z̃c2(2c1 − c2c3); although
explicit numerical solutions are possible we have found those fine tuned cases rather artificial.
In particular, they have apparently no relationship with the no-pole region (|c3| > g+(1)/c1)

and will be disregarded in this work. In the following section we use the photon propagator
as an input to calculate the static potential V (L).

3. The static potential V (L)

Minimizing the effective action (14) we obtain

Aβ(y) =
∫

d3xDβα(y, x)jα
ext(x) (21)

=
∫

d3k

(2π)3
D̃βα(k)

∫
d3x eik·(y−x)jα

ext(x). (22)

Since the external current is time independent, in (22) there will be a factor
∫

dx0 e−ik0x0 =
2πδ(k0) which allows an exact integration over k0, implying kµkµ = −k2

1 − k2
2 = −�k2 < 0;
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consequently z < 0 and we need the analytic continued functions f̃ 2 instead of f2. The
integrals over x1 and x2 can also be readily done using the delta functions in the external
current. The angle part of the integral dk1 dk2 = k dk dθ gives rise to the Bessel function
J0(kL). Thus, we are left with the radial integral over k =

√
k2

1 + k2
2. Placing the negative

charge −Q at (y1, y2) = (−L/2, 0) we have

V (L) = −QA0(y1 = −L/2, y2 = 0)

= −Q2

2π

∫ ∞

0
dk kb̃J0(kL). (23)

The tilde in the expression b̃ stands for the analytic continuation of (18) to z < 0.
Now we discuss some special cases starting with the pure scalar QED3 where c3 = 0 = c2.

In this case kb̃J0(kL) = J0(kL)/[k(1 + c1f̃ 2)] since f̃ 2(k = 0) = 2/3 and J0(0) = 1 we
have an infrared divergence at k = 0 and the integral (23) is divergent as it stands. We make
a subtraction in order to get rid of this infrared divergence and define

V (L) − V (L0) = −Q2

2π
lim
x→0

∫ ∞

x

dk kb̃[J0(kL) − J0(kL0)]. (24)

In general the integral (24) must be calculated numerically; one exception is the large mass
limit m → ∞. In this case kb̃ → 1/[k(1 + 2c1/3)] and the integral can be calculated
exactly [23]

[V (L) − V (L0)]m→∞ = Q2
R

2π
ln

(
L

L0

)
, (25)

where

QR = Q[
1 + e2

24πm

]1/2 . (26)

The classical potential is given by (25) with QR replaced by the bare charge Q. Therefore, the
sole effect of the vacuum polarization is a finite renormalization of the charge. The situation is
similar to QED3 with four-component fermions where no Chern–Simons term is dynamically
generated, the only difference is the renormalized charge which is Q/[1 + e2/(6πm)] instead
of (26). Thus, the renormalization factor is larger for fermions than for scalars. For finite mass
the potential must be calculated numerically. We plot1 the results in figure 1 for the masses
m = 1 and m = 0.01 and compare with the classical result and the result of [9] for four-
component fermions. We note that the finite renormalization due to the vacuum polarization
is always stronger for fermions than for scalars, and its effect increases with the mass of
the matter fields. For both scalar QED3 and QED3 we see in figure 1 that the numerically
calculated static potential at m = 1 is already very close to the analytic result (solid lines)
obtained in the limit m → ∞.

Next, we check the effect of the non-minimal coupling c2 �= 0 in the absence of the
Chern–Simons term (c3 = 0). In figure 2 we see that for L → ∞ the effect of the non-
minimal coupling in the vacuum polarization disappears and the potential becomes logarithmic
which can be explained technically by the fact that the Bessel function J0(kL) oscillates with
decreasing amplitude as L → ∞ and so the integral will be dominated by the pole at the
origin k = 0 which makes the higher derivative, see (11), contribution of the non-minimal
coupling negligible. However, in a finite range close to L = 0 the non-minimal coupling
gives rise to a surprising repulsive force in a much similar way to what happens in the case
of four-component fermions in [9]. Such repulsive force may play an important role in the

1 In all figures in this work the symbol V stands actually for the difference V (L) − V (L0).
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2 4 6 8 10
L

-2

-1

1

2

V

Figure 1. The static potential for pure scalar QED3 (dark dots) and pure QED3 with four-
component fermions (light dots). The dashed line corresponds to the classical potential. We have
fixed (c1, c2, c3) = (1, 0, 0) and m = 0.01 for the two dotted curves closer to the classical potential
while we have m = 1 for the farther curves which overlap with the m → ∞ analytic result (solid
curves).

1 2 3 4 5
L

-1.5

-1

-0.5

0.5

1

V

Figure 2. The static potential for scalar QED3 without the tree level Chern–Simons term
(c3 = 0). The solid line corresponds to pure scalar QED3 (c2 = 0) while the dark (light)
dots to c2 = 2(c2 = 4). We have assumed m = 3 and c1 = 1.

5 10 15 20 25
L

-1.5

-1

-0.5

0.5

1

1.5
V

Figure 3. The static potential for scalar QED3 with the tree level Chern–Simons term (c3 = 1).
From the lightest to the darkest curve we have c2 = 0, 0.4, 0.8. We have assumed m = 1 = c1.

existence of bound states. Differently from the calculation based on the Möller scattering [11]
we see here effects of the non-minimal coupling even in the absence of the Chern–Simons
term.

Now we turn on the Chern–Simons term (c3 �= 0). As we see in figure 3, the potential
V (L) − V (L0) tends to the constant −V (L0) as L → ∞ like the case of QED3 with
two-component fermions, see [6], where a Chern–Simons term is dynamically generated.
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Once again, a repulsive force appears for small separations as we switch on the non-minimal
coupling. As L → ∞ the only effect of the non-minimal coupling is to change the constant
−V (L0). Although, the plot in figure 3 has been made for m = 1 and c1 = 1 we have
checked that the same form of the potential persists for other values of those constants. In
summary, the effect of the non-minimal coupling is qualitatively the same in the presence of
a Chern–Simons term.

4. Discussions and conclusion

In the case of QED3 with two-component fermions, it is well known that a Chern–Simons term
is dynamically generated which makes the photon massive and turns the classical confining
logarithmic potential into constant at large distances. In scalar QED3, the mass term for the
scalars is parity invariant and no Chern–Simons term is dynamically generated and so the
classical logarithmic potential survives vacuum polarization effects. Here we have explicitly
confirmed that fact and analysed the effect of adding a parity breaking non-minimal coupling
term of Pauli type as well as a tree level Chern–Simons term. It turns out that the non-minimal
coupling by itself neither affects the analytic properties of the photon propagator nor changes
the large distance behaviour of the static potential which is unexpected from the point of view
of the interpretation that this term may originate anyons with no need of a Chern–Simons
term, see [12–14] but see also [15]. On the other hand, at small charge separations the non-
minimal coupling gives rise to a repulsive force between opposite sign charges which has been
observed before in [16] by computing the one-photon exchange diagram (Möller scattering)
and taking the non-relativistic limit. Notwithstanding, the effect found in [16] only appears in
the presence of the tree level Chern–Simons term and its attractive or repulsive nature depends
on the sign of (1 − γ θ/e) in contrast to what we have found here where the non-minimal
coupling influence is present, see figure 2, even if θ = 0 and its effect is always repulsive
independently of the sign of γ or θ .

Concerning the tree level Chern–Simons term, as expected, it gives mass to the photon
and shifts the zero momentum pole in the integral involved in the static potential (24). The
absence of a singularity in the integration path allows us to take the limit L → ∞ before
performing the integral and so it will vanish as a consequence of J0(x → ∞) → 0. This
effect of the Chern–Simons term was certainly not surprising. However, it is remarkable that
we found an upper bound for the absolute value of the Chern–Simons coefficient in order to
have a physical pole in the photon propagator at one-loop level. As we increase such absolute
value the photon mass increases and penetrates the real pair creation region k2 � 4m2 for
finite values of the coupling constants of the theory. We can mention that this situation is
not peculiar to scalar fields since we have noted in [8] that it happens also in QED3 with
two-component fermions. In that case, if c1 = e2/(16πm) � 1, there will be no poles in
the photon propagator at one-loop level. However, one could argue that c1 is a dimensionless
constant which controls the perturbative expansion (for Nf = 1) such that the upper bound
could be understood as a limit for the perturbation theory. This argument does not work
for scalar QED3 even if we drop the non-minimal coupling (c2 = 0) since the upper bound
increases with c1 which makes the latter case more intriguing.

At last, we note that the static potential in pure scalar QED3 without tree level Chern–
Simons term has been studied in [24] where the authors conclude that the potential is of
screening type and even fractional charges can be fully screened. However, the authors of
[24] have neglected terms of order e2/m which have been considered here. Besides, they have
gone above the pair creation threshold and made use of variational methods altogether with
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a peculiar ansatz for the two-particle wavefunction, so we can hardly compare their findings
with our results obtained below the pair creation threshold.
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